9 сентября 1952 г. вышло подписанное И.В. Сталиным Постановление СМ СССР о создании атомной подводной лодки (ПЛА). Общее руководство научно-исследовательскими работами и работами по проектированию объекта возлагалось на ПГУ при СМ СССР (Б.Л. Ванников, А.П. Завенягин, И.В. Курчатов), а строительство и разработка корабельной части и вооружения - на Министерство судостроительной промышленности (В.А. Малышев, Б.Г. Чиликин). Научным руководителем работ по созданию комплексной ядерной энергетической установки (ЯЭУ) был назначен А.П. Александров, главным конструктором ЯЭУ – Н.А. Доллежаль, главным конструктором лодки - В.Н. Перегудов.

Для руководства работами и рассмотрения научных и конструкторских вопросов, связанных с постройкой подводной лодки, при Научно-техническом совете ПГУ была организована Секция № 8, которую возглавил В.А. Малышев. Выполнение основных работ по ЯЭУ наряду с Курчатовским институтом поручалось Лаборатории "В", а ее директор Д.И. Блохинцев был назначен заместителем научного руководителя. Постановлением Совмина на Лабораторию "В" было возложено выполнение расчетно-теоретических работ, разработка твэлов, сооружение и испытание опытного реактора подводной лодки.

Первой и важнейшей задачей стал выбор типа реактора в качестве основного источника энергии, а также общего облика энергетической установки. Сначала это были реакторы на графитовом и бериллиевом замедлителе с тепловыделяющими трубами, несущими давление, близкие по типу к строящейся тогда Первой АЭС. Несколько позднее возникли установки, у которых замедлителем была тяжелая вода. И только потом (а по тем темпам это был один месяц!) появился корпусной водо-водяной реактор.

Таким образом, уже с самого начала в Лаборатории «В» рассматривались два варианта ЯЭУ для подводных лодок: с водным теплоносителем и жидкометаллическим теплоносителем свинец-висмут. По инициативе А.И. Лейпунского работы по созданию транспортных ядерных установок были начаты в Лаборатории «В» еще в 1949 г.

К этому времени было известно, что в США ведутся работы по установкам двух типов: реакторы на тепловых нейтронах с водой под давлением и реакторы на промежуточных нейтронах с натриевым теплоносителем. Поэтому работы по созданию энергетических установок для атомных подводных лодок были развернуты в двух направлениях: водо-водяные реакторы и реакторы с жидкометаллическим теплоносителем.

Выбор эвтектического сплава свинец-висмут как теплоносителя для ядерных реакторов был сделан А.И. Лейпунским еще до начала развертывания работ в СССР по атомным подводным лодкам. Как вспоминает главный конструктор ЯЭУ Н.А. Доллежаль: «Этот вариант особенно поддерживал Д.И. Блохинцев , в то время директор Лаборатории «В» в Обнинске, где академик Александр Ильич Лейпунский работал над вопросами использования техники быстрых нейтронов. Его идея заключалась в том, что можно создать ядерную энергетическую установку для подводной лодки, в реакторе которой в качестве теплоносителя использовался бы жидкий металл (например, сплав свинца и висмута), и он мог нагреваться до достаточно высокой температуры без создания давления. А.И. Лейпунский был выдающимся ученым, и сомневаться в серьезности его предложений оснований не было».

Научным руководителем работ по созданию реакторов с жидкометаллическим теплоносителем был назначен А.И. Лейпунский , а после его смерти в 1972 г. – Б.Ф. Громов . Проекты серийных реакторных установок для подводных лодок разрабатывали ОКБ «Гидропресс» (г. Подольск) и ОКБМ (г. Нижний Новгород), а проекты самих кораблей – Санкт-Петербургское морское бюро машиностроения (СПМБМ) «Малахит».

В отличие от американцев, А.И. Лейпунский предложил и обосновал в качестве теплоносителя эвтектический сплав свинец-висмут, несмотря на его худшие теплофизические свойства в сравнении с натрием. Последующий опыт развития этих конкурирующих направлений подтвердил правильность выбора, сделанного им. (После нескольких аварий на наземном стенде-прототипе и опытной подлодке работы в США по этому направлению были прекращены.)

Одна из первых проблем возникла в самом начале работ при обосновании нейтронно-физических характеристик реактора с промежуточным спектром нейтронов, который формировался в активной зоне, из-за большой утечки нейтронов, обусловленной малыми размерами реактора и использованием бериллиевого замедлителя. А.И Лейпунский поставил перед В.А. Кузнецовым задачу создать критическую сборку, на которой можно было бы проверить методы и константы для расчета промежуточного реактора. Такая критсборка в 1954 г. была создана. Но 11 марта 1954 г., во время набора критмассы, произошел разгон реактора на мгновенных нейтронах. А.И. Лейпунский и все физики, занятые в эксперименте, были срочно госпитализированы в Москве.

Задача могла быть решена только при наличии крупномасштабных экспериментальных стендов, на которых оборудование отрабатывалось бы в условиях, близких к натурным. Поэтому в 1953 г. на базе Лаборатории «В» приступили к строительству полномасштабных стендов-прототипов ЯЭУ с водяным охлаждением (стенд 27/ВМ) и жидкометаллическим охлаждением (стенд 27/ВТ), которые были введены в эксплуатацию соответственно в 1956 и 1959 гг. Эти стенды представляли собой реакторные и турбинные отсеки атомных подводных лодок. На длительный срок они стали основной экспериментальной базой ФЭИ и Курчатовского института для отработки реакторов новых типов, равно как и базой Обнинского учебного центра ВМФ по подготовке экипажей подводных лодок.

Крейсерская атомная подводная лодка К-27 (проект 645)

Первая советская крейсерская атомная подводная лодка К-27 (проект 645) с ЯЭУ, охлаждаемой жидким металлом, в 1963 г. успешно прошла государственные испытания. В 1964 г. она совершила дальний поход в экваториальную Атлантику, во время которого (впервые в советском ВМФ) без всплытия в надводное положение прошла 12 278 миль за 1240 ходовых часов (51 сутки). Командиру лодки И.И. Гуляеву было присвоено звание Героя Советского Союза. Моряки дали высокую оценку ядерной энергетической установке. От Лаборатории "В" в этом уникальном походе участвовал один из создателей ЯЭУ, главный инженер стенда 27/ВТ К.И. Карих. В 1965 г. К-27 совершила второй поход, став первой советской атомной подводной лодкой, скрытно проникшей в Средиземное море.

В это время развернулось создание серии лодок второго поколения с ЯЭУ, использующей жидкометаллический теплоноситель свинец-висмут. В начале 1960-х годов в связи с созданием и выходом на боевое патрулирование в океан подводных ракетоносцев США, получивших название в западном мире «убийцы городов» (по типу выбора целей – их ракеты были нацелены на наши города), в СССР было принято решение о создании специальных противолодочных подводных лодок. Одним из пунктов программы стало задание на постройку малой скоростной автоматизированной лодки – истребителя подводных лодок, т.е. истребителя «убийц городов».

Проектирование атомной подводной лодки проекта 705 (советский шифр «Лира») началось после выхода Постановления ЦК КПСС и Совета Министров СССР летом 1960 г. Главная задача – создание высокоманевренной, скоростной, малого водоизмещения подводной лодки с ЯЭУ, с титановым корпусом, с резким сокращением численности экипажа, с внедрением новых образцов оружия и технических средств.

Важнейшим элементом паропроизводящей установки новой лодки был ядерный реактор с теплоносителем свинец-висмут, разработанный под научным руководством ФЭИ. Тяжелая биологическая защита и невысокие параметры пара ЯЭУ с водо-водяным реактором (на тот период) приводили к большому удельному весу реакторной установки. Новый реактор с жидкометаллическим теплоносителем позволял сократить водоизмещение, диаметр прочного корпуса и длину подводной лодки, увеличить скорость подводного хода. Благодаря этому принципиальнымотличием новой паропроизводящей установки являлись компактность, блочность компоновки, высокая степень автоматизации и маневренность, хорошие экономические и массогабаритные показатели.

Атомная подводная лодка проекта 705

Особое место в освоении реакторов со свинцово-висмутовым теплоносителем заняла проблема технологии этого теплоносителя. Под этим словосочетанием понимаются методы контроля и поддержания требуемого качества теплоносителя и чистоты первого контура в ходе эксплуатации реакторной установки. Важность этой проблемы была осознана после аварии реактора на лодке К-27 в мае 1968 года. Соответствующие методы и устройства поддержания качества теплоносителя были разработаны, когда завершалось строительство запланированной серии ПЛА проектов 705 и 705К.

Первая крейсерская подводная лодка нового типа К-64 в декабре 1971 года была принята в опытную эксплуатацию. И хотя в составе флота несли боевую службу только шесть кораблей этого типа, появление в океане новой советской противолодочной субмарины наделало много шума и стало для ВМС США неприятной неожиданностью. Американские подводные стратегические ракетоносцы были поставлены в трудное тактическое положение. Малые размеры подводных лодок проекта 705, значительный диапазон глубины погружения, высокая скорость полного хода позволяли ей осуществлять маневрирование на максимальной скорости, невозможное для всех других типов подводных лодок, и даже уходить от противолодочных торпед. Корабли этого проекта за свои скоростные и маневренные качества были занесены в «Книгу рекордов Гиннеса».

«Сейчас, оглядываясь назад, - пишет главный конструктор СПМБМ «Малахит» (где разрабатывался проект лодки) Р.А. Шмаков, - следует признать, что эта лодка была проектом XXI века. Она обогнала свое время на несколько десятилетий. Поэтому не удивительно, что для многих специалистов, испытателей, личного состава ВМФ она оказалась слишком трудной в освоении и эксплуатации».

«Идея создания такой лодки, какой стала ПЛА проекта 705, - отмечает заместитель главного конструктора проекта Б.В. Григорьев, - могла реализоваться только в 1960‑х годах, когда советское общество находилось на подъеме, открывались новые направления научных исследований и разработок, а оборона страны была важнейшим государственным приоритетом.» «Атомная подводная лодка проекта 705, – по определению секретаря ЦК КПСС и министра обороны СССР Д.Ф. Устинова, – стала общенациональной задачей, стала попыткой осуществить рывок для достижения военно-технического превосходства над западным блоком».

Командиры и офицеры подводных лодок с реакторными установками, разработанными в ФЭИ, давали очень высокую оценку самой лодке и её ядерной энергетической установке, называя ее «чудо-лодкой», сильно опередившей своё время.

Сегодня можно считать общепризнанным, что в ФЭИ под руководством А.И. Лейпунского заложены основы нового направления ядерной энергетики, а также в промышленном масштабе продемонстрирована уникальная реакторная технология. Это позволило обеспечить компактность реакторной установки, что важно при создании подводных лодок ограниченного водоизмещения, обеспечить высокие маневренные качества, повысить надёжность и безопасность реакторной установки.

Большой вклад в развитие этого направления внесли А.А. Бакулевский, Б.Ф. Громов , К.И. Карих, В.А. Кузнецов, И.М. Курбатов, В.А. Малых , Г.И. Марчук , Д.М. Овечкин , Ю.И. Орлов, Д.В. Панкратов, Ю.А. Прохоров, В.Н. Степанов, В.И. Субботин , Г.И. Тошинский, А.П. Трифонов, В.В. Чекунов и многие другие.

Атомная энергетика в России с момента своего появления оставалась прерогативой государства, особенно в части развития новых технологий. Частные инвесторы в последние годы не раз предпринимали попытки войти на этот рынок, и успеха пока удалось добиться только En+ Group, управляющей активами Олега Дерипаски. Паритетное СП Росатома и En+ будет адаптировать реакторы атомных подводных лодок к гражданским нуждам. О деталях будущего проекта и его перспективах в интервью «Интерфаксу» рассказала гендиректор СП Анна Кудрявцева.


- Вы достаточно давно прорабатывали этот проект. Когда была зарегистрирована компания? Каковы будут вклады сторон: инвестиции со стороны Евросибэнерго и доля Росатома?

СП зарегистрировано 10 декабря, вклады сторон - 50 на 50. Вносим не только инвестиции, но и интеллектуальную собственность тоже.
У нас есть базовая технология реактора со свинцово-висмутовым теплоносителем СВБР (свинцово-висмутовый быстрый реактор - ИФ), которая была отработана отраслевыми организациями - «Гидропрессом» и Обнинским Физико-энергетическим институтом. Установки СВБР, только меньшей мощности, эксплуатировались на атомных подводных лодках. Так что СВБР - апробированная технология, и Россия - единственная страна в мире, которая имеет данную работоспособную технологию.

- А за рубежом кто-то занимается аналогичными проектами реакторов со свинцово-висмутовым теплоносителем?

- Какие-то страны находятся на стадии НИОКР, кто-то имеет только предварительные заделы и концепции.

- На каких заказчиков ориентированы АЭС с реакторами СВБР?

Такие станции предназначены для нужд региональной энергетики, где есть потребность в генерации средней и малой мощности с повышенным уровнем безопасности. Я имею в виду в первую очередь труднодоступные районы, где ведут добычу металлургические компании, или нефтегазовые.
Кроме того, у проекта большой экспортный потенциал, в первую очередь в Африке и Азии, где по объемам потребления не нужны реакторы-тысячники (мощностью 1000 МВт - ИФ), или они не подходят из-за сетевых ограничений. Но им при этом нужен повышенный уровень безопасности, такой, чтобы если что-то случается, установка самозаглушилась. А у нас как раз сам принцип реактора нацелен на то, чтобы обеспечить максимальную безопасность даже в не слишком умелых руках.

- Раньше приводилась оценка суммарной стоимости проекта - до $1 млрд. Подтверждаете эту сумму?

- Весной мы оценивали необходимые инвестиции примерно в 14 -16 млрд рублей (на срок до 2019 г.), но это в докризисных ценах. С учетом кризиса понятно, что данная сумма будет корректироваться. С одной стороны, мы видим удешевление рабочей силы, и по некоторым позициям - оборудования, подготовительных работ. С другой стороны мы понимаем, что есть инфляция.
Подчеркну, что мы в рамках СП закладываем четкий принцип: использование всех классических канонов проектного управления. То есть будет идти строгий контроль за расходами с обеих сторон.

- Росатом и частный инвестор имеют паритетные доли. А как будет осуществляться разрешение спорных вопросов?

Международный арбитраж.

Оценку интеллектуальной собственности вы уже провели? Когда «Росатом» внесет ее в СП, и как это будет осуществляться?

Предварительные переговоры с партнером по этому вопросу прошли. Однако остаются вопросы по процедуре оценки этих активов по их реальной стоимости. Дело в том, что сейчас разработки по проекту СВБР являются собственностью предприятий отрасли. И, как правило, их оценка по балансу довольно низкая. Для того чтоб нам внести данную интеллектуальную собственность в СП по коммерческой стоимости, нужна будет переоценка. Но при этом возникают вопросы законодательного характера, ведь переоценка вызовет для предприятий последствия налогового характера. Проще говоря, у них возникает налог на прибыль. Это проблемная точка не только нашего проекта, она характерна для страны в целом.
В связи с этим Госкорпорация «Росатом» создала межотраслевую рабочую группу, которая пока находится в стадии становления. Туда, как мы ожидаем, войдут все ведущие технологические корпорации. Например, уже подтвердили свое участие Ростехнологии. Также привлекаем к этой деятельности Роснано, РЖД и Газпром. В рамках рабочей группы будут отрабатываться предложения по совершенствованию законодательства РФ в части научно-технической и инновационной деятельности, и, в частности, того, что касается учета в активах интеллектуальной собственности. В 2010 году мы планируем подготовить пакет соответствующих законодательных инициатив.

- А когда, в таком случае, вы ожидаете корректировки законов?

Скорее всего, как мы надеемся, эти предложения могут быть утверждены в 2011 году. Но торопиться мы не будем.

- Можете оценить, какова будет доля интеллектуальной собственности в общей стоимости проекта?

- У нас есть предварительная цифра, но это конфиденциальная информация.

- Какие приоритетные задачи СП определило для себя на ближайшие годы?

Первая стадия нашей работы - НИОКР и подготовка гражданского проекта. Закладываем на это примерно 3,5-4 года. Управление НИОКРами с обеспечением результативности - задача номер один.
Вторая точка приложения наших усилий - определение места размещения пилотной установки. Мы выбираем сейчас из трех площадок, все это - отраслевые предприятия, где сосредоточены кадровые и технические ресурсы. Не хотелось бы пока их называть. В начале 2010 года, думаю, будет сделан выбор в пользу одной из площадок.
Выбирать будем по набору критериев, среди которых технико-геологические характеристики, кадровый потенциал, экономика проекта, а также энергодефицитность региона. Несмотря на то, что мощность пилотной установки будет маленькая, мы рассматриваем ее не только как площадку для отработки технологий, но и как экономический объект.

Основой атомной энергетики сейчас являются АЭС с реакторами ВВЭР, которые несут базовую нагрузку в ЕЭС России. То есть они не могут маневрировать в течение суток вслед за изменением потребления. А станции с реакторами СВБР тоже будут работать в базе?

Маневренность - это одна из характеристик, которую мы закладываем в проект. Еще одно преимущество СВБР - модульность. Реактор на 100 МВт не будет монтироваться на месте, он будет собираться на заводе-изготовителе и доставляться затем на площадку. Это удешевляет проект.

- Уже понятно, кто будет заводом-изготовителем?

Есть целый ряд предприятий, отраслевых и не отраслевых, которые мы рассматриваем. Готовы также смотреть на зарубежных поставщиков оборудования. Кроме того, у самого СП стоит задача по развитию компетенций не только в сфере инжиниринга атомных станций, но и в части реакторостроения.
Отмечу, что сейчас в связи с кризисом у машиностроителей меньше заказов от традиционной энергетики, и активной борьбы за их мощности не происходит, так что в этом смысле мы стартуем в удачное время.

- Стоимость 1 кВт мощности станции с реактором СВБР будет сопоставима с ценой ВВЭР?

На опытно-промышленной установке экономики никогда не получается. Дальше весь вопрос - в конфигурации серийного блока. Мы сейчас ведем проработку этого вопроса, оцениваем рынок, в том числе зарубежный. Чем больше мощность АЭС, тем станция экономичнее, и, в конечном счете, возможно, оптимально было бы строить станции с реакторами СВБР сразу на 1000 МВт. Мы и это можем делать. Другой вопрос, что у атомной отрасли в этой мощностной линейке есть и «быстрые» натриевые реакторы (проект БН-800 - ИФ), и ВВЭР. Поэтому в эту нишу мы вряд ли будем заходить, а скорее сосредоточимся на региональной энергетике.
Предварительная оценка показывает, что оптимальная мощность АЭС с СВБР будет в пределах 200-400 МВт. Но в результате все будет зависеть от рынка, от того, сколько рынок сможет съесть.
Более отчетливо экономические параметры проекта будут видны, когда пилотная установка заработает. Хотя, безусловно, все базовые расчеты и прогнозы мы делаем уже сейчас.

- Как будут решаться вопросы по радиоактивным отходам СВБР?

В части отходов особых проблем у нас нет. Понятны и очевидны какие-то рисковые технические точки, но неразрешимой критики нет, только чисто инженерные вопросы.
В целом в отрасли сейчас создается единая система обращения с РАО и ОЯТ, и мы туда просто вписываемся, будем потребителями услуг национальных операторов в этой сфере. Также и с топливом будет.

- Какое кстати топливо использует СВБР?

Пока будем использовать традиционное топливо - обогащенный уран. Далее будет, по всей видимости, уран-плутониевое топливо (МОКС), и на следующем этапе - плотное топливо, когда оно появится. Геометрия активной зоны СВБР позволяет использовать любые виды топлива.

- Если я правильно понимаю, СВБР может быть и наработчиком ядерных материалов, так называемым «бридером»?

Да, это так. Хотя у нас нет самоцели заниматься наработкой плутония. Наоборот, с точки зрения нераспространения лучше «бридерами» эти установки не делать. К тому же есть «быстрые» натриевые реакторы, которые могут наработать все, что нужно отрасли для производства МОКС-топлива, в частности. И потом, должна быть определенная пропорция реакторов - потребителей МОКСа, и наработчиков плутония для этих целей. И эта доля не один к одному.

Насколько нам известно, ранее обсуждалась возможность использования СВБР для размещения на площадках АЭС, выведенных из эксплуатации. Например, на Нововоронежской станции, где уже отработали свой ресурс 1-й и 2-й энергоблоки. Эта идея еще актуальна?

Как опция такой вариант рассматривается, но детальной проработки мы пока не делали. Впрочем, также мы пониманием, что на рынке могут быть востребованы дополнительные услуги СВБР, такие как перегретый пар, тепло, установки по опреснению воды.

- Проект рассчитан на достаточно длинный период реализации, а сейчас, в условиях кризиса, многие частные инвесторы сталкиваются с финансовыми трудностями. Допускаете вариант, что ваш партнер по каким-то причинам может выйти из проекта или сократить свое участие в нем?

- Наш партнер, Евросибэнерго, подтвердил свою заинтересованность, в том числе на уровне руководства, и предоставил определенные гарантии. Мы работаем уже полтора года, и финансирование в течение 2009 года, в частности, идет и со стороны Евросибэнерго.

- Сколько денег уже вложено?

Точную сумму назвать невозможно, потому что нет ясности, как корректно оценить по затратному принципу то, что было вложено в советские годы, и в частности по линии министерства обороны, ведь реакторы СВБР эксплуатировались на АПЛ.
В целом по проектам такого рода со стороны затрат оценку сделать невозможно. Поэтому если оценивать, то только по доходному принципу.

- Вы рассчитываете и на поддержку государства. В чем она будет выражаться?

У этого вопроса есть два аспекта, как две стороны одной медали. Во-первых, есть отраслевая ФЦП по ядерным технологиям нового поколения, где отдельной статьей прописано развитие «быстрой» энергетики, то есть реакторов с натриевым, свинцовым и свинцово-висмутовым теплоносителями. Финансирование по направлению СВБР там предусмотрено, и мы рассматриваем это как вклад государства в дело госкорпорации. И вторая сторона - в рамках президентской комиссии по модернизации наш проект еще в июле был утвержден, с пометкой «без дополнительного финансирования». Там есть такой формат, подтверждающий приоритетный статус проекта.

Прошло более 15 лет, с тех пор как последняя из лодок проекта 705 была исключена из состава российского ВМФ, а в кругах военных моряков и кораблестроителей по сей день не утихают споры. Чем же на самом деле был проект 705 - прорывом в будущее, опередившим свое время, или дорогостоящей технической авантюрой?

Внешние обводы лодки отрабатывались в ЦАГИ, проверялись на многочисленных моделях в бассейнах ленинградского ЦНИИ им. Крылова. И, кроме технического совершенства и многочисленных новшеств, важных для боевого корабля, АПЛ получилась еще и необыкновенно красивой.


К 1990 году все (кроме одной) АПЛ 705-го проекта были выведены из состава флота, прослужив существенно меньше того срока, на который были рассчитаны. Последняя, К-123, закончила свою службу в 1997 году.


Гоночная лодка
Фото: АПЛ проекта 705 благодаря своим обводам и энерговооруженности были динамичными и необычайно маневренными. Лодка была способна разогнаться до полного хода за минуту, а циркуляцию с полным разворотом совершала на полной скорости за 42 секунды. Она могла часами «висеть на хвосте» у АПЛ условного противника (был реальный случай, когда лодка преследовала натовскую АПЛ в Северной Атлантике на протяжении 20 часов). Более того, лодка могла даже уйти от выпущенной в ее направлении торпеды!

В 1959 году, когда уже вышла в море построенная по проекту ленинградского СКБ-143 (ныне СПМБМ «Малахит») первая советская атомная подводная лодка (АПЛ) «Ленинский Комсомол», а в Северодвинске разворачивалось строительство целой серии подобных кораблей, ведущий специалист этого же СКБ А.Б.?Петров выступил с предложением о создании «Малой скоростной подводной лодки-истребителя». Идея была весьма актуальна: подобные лодки нужны были для охоты на субмарины - носители баллистических ракет с ядерными зарядами, которые тогда начинали активно строиться на стапелях потенциального противника. 23 июня 1960 года ЦК и Совмин одобрили проект, которому был присвоен номер 705 («Лира»). В странах НАТО эта лодка стала известна как «Альфа» (Alfa). Научными руководителями проекта стали академики А.П.?Александров, В.А.?Трапезников, А.Г.?Иосифьян, а главным конструктором корабля - Михаил Георгиевич Русанов. Это был талантливый человек с очень нелегкой судьбой: семь лет пребывания в ГУЛАГе, а после освобождения - запрет на въезд в Ленинград. Опытный инженер-кораблестроитель работал в артели по изготовлению пуговиц в Малой Вишере и лишь в 1956 году смог вернуться в Ленинград, в СКБ-143. Начинал он с заместителя главного конструктора АПЛ проекта 645 (этот опыт оказался для Русанова очень полезен).

Битва с титаном

Предназначение новой подводной лодки определяло основные требования - высокие скорость и маневренность, совершенная гидроакустика, мощное вооружение. Для обеспечения двух первых требований лодка должна была иметь предельно малые габариты и массу, самые высокие гидродинамические характеристики корпуса и мощную энергетическую установку, вписывающуюся в ограниченные габариты. Выполнить подобное было невозможно без нестандартных решений. В качестве основного материала для корпуса корабля, а также многих его механизмов, трубопроводов и арматуры был выбран титан - металл почти вдвое легче и одновременно прочнее стали, к тому же абсолютно коррозионностойкий и маломагнитный. Однако он довольно капризен: сваривается только в среде инертного газа - аргона, резать его сложно, он имеет высокий коэффициент трения. К тому же титан нельзя было использовать в прямом контакте с деталями из иных металлов (стали, алюминия, латуни, бронзы): в морской воде он образует с ними электрохимическую пару, что вызывает разрушающую коррозию деталей из других металлов. Пришлось разработать специальные марки высоколегированной стали и бронзы, и специалистам ЦНИИ металлургии и сварки («Прометей») и ЦНИИ технологии судостроения удалось преодолеть эти титановые каверзы. В итоге был создан малогабаритный корпус корабля подводным водоизмещением 3000 т (хотя заказчик - ВМФ - настаивал на ограничении в 2000 т).

Надо сказать, что советское судостроение уже имело опыт создания ПЛ из титана. В 1965 году в Северодвинске была построена (в единственном экземпляре) АПЛ проекта 661 с титановым корпусом. Эта лодка, известная как «Золотая рыбка» (намек на ее фантастическую стоимость), по сей день остается рекордсменом по скорости под водой - на ходовых испытаниях она показала 44,7 узла (около 83 км/ч).

Сплошные новшества

Еще одним радикальным новшеством стала численность экипажа. На других АПЛ (как советских, так и американских) службу несут по 80−100 человек, а в техническом задании на 705-й проект была названа цифра 16, причем только офицеров. Однако в ходе проектирования численность будущего экипажа подрастала и в итоге достигла 30 человек, включая пять техников-мичманов и одного матроса, на которого возлагалась немаловажная роль кока, а по совместительству дневального-уборщика (изначально предполагалось, что обязанности кока будет выполнять корабельный доктор). Чтобы совместить такую малочисленность экипажа с огромным количеством и механизмов, лодку пришлось очень серьезно автоматизировать. Позднее моряки даже прозвали лодки 705-го проекта «автоматами».

Впервые в стране (а вероятно, и в мире) глобальная автоматизация охватывала все: управление движением корабля, применение оружия, главную энергетическую установку, все общекорабельные системы (погружение, всплытие, дифферентовку, выдвижные устройства, вентиляцию и т.?д.). Одним из ключевых и очень спорных вопросов при разработке систем автоматики (этим занимался целый ряд НИИ и КБ, в том числе ЦНИИ «Аврора», «Гранит», «Агат») был выбор частоты тока для корабельной электросети. Рассматривались варианты 50 и 400 Гц, каждый имел свои достоинства и недостатки. Окончательное решение в пользу 400 Гц было принято на трехдневном совещании руководителей нескольких причастных к теме организаций при участии трех академиков. Переход на повышенную частоту вызвал немало производственных проблем, но зато позволил заметно сократить габариты электрооборудования и приборов.


Вооружение

На АПЛ проекта 705 были впервые установлены пневмогидравлические торпедные аппараты, обеспечивающие стрельбу во всем диапазоне глубины погружения. Шесть торпедных аппаратов и 18 торпед с учетом скорости и маневренности лодки делали ее серьезным противником для подлодок стран НАТО.

Атомное сердце

И все же основным новшеством, определившим судьбу всего проекта, стал выбор главной энергетической установки корабля. Ею стал компактный атомный реактор на быстрых нейтронах (БН) с жидкометаллическим теплоносителем (ЖМТ). Это позволило сэкономить около 300 т водоизмещения за счет большей температуры пара и, следовательно, лучшей эффективности турбины.

Первой в мире подлодкой с реактором такого типа стала американская АПЛ Seawolf (1957). Конструкция оказалась не слишком удачной, во время ходовых испытаний произошла разгерметизация первого контура с выбросом натрия. Поэтому в 1958 году реакторы были заменены на водо-водяные, а с реакторами на ЖМТ военные в США более связываться не стали. В СССР предпочли использовать в качестве теплоносителя расплав свинец-висмут, значительно менее химически агрессивный, чем натрий. Но построенной в 1963 году АПЛ К-27 тоже не повезло: в мае 1968 года во время похода произошел разрыв первого контура одного из двух реакторов. Экипаж получил огромные дозы облучения, девять человек погибли, и лодку окрестили «Нагасаки» (кличка «Хиросима» уже была занята К-19 в 1961 году). АПЛ была столь радиоактивна, что не подлежала ремонту, и в итоге в сентябре 1982 года она была затоплена у северо-восточных берегов Новой Земли. К ее «титулам» флотские остряки добавили «вечно подводная». Но и после трагедии К-27 в СССР решили не отказываться от заманчивой идеи использования реакторов с ЖМТ на АПЛ, над их совершенствованием продолжали работать инженеры и ученые под руководством академика Лейпунского.

За разработку главной энергетической установки для 705-го проекта взялись две организации. Подольское ОКБ «Гидропресс» создало блочную двухсекционную установку БМ-40/А с двумя циркуляционными насосами. Горьковское ОКБМ выдало установку ОК-550, тоже блочную, но с разветвленным первым контуром и тремя циркуляционными насосами. В дальнейшем обе установки нашли применение на АПЛ 705-го проекта: ОК-550 устанавливалась на лодки, строящиеся в Ленинграде (четыре корабля), а на три лодки, построенные в Северодвинске по варианту проекта 705К, установили БМ-40/А. Обе установки обеспечивали мощность на валу турбины до 40??000 л.с., что позволяло развивать предусмотренную техническим заданием скорость в 40 узлов.


Полный автомат
Чтобы управлять подводной лодкой силами весьма ограниченного по тем временам экипажа в 30 человек, были разработаны многочисленные системы автоматизации, позволяющие держать под контролем все механизмы корабля. Позднее моряки даже дали этим лодкам прозвище «автомат».

Самая длинная лодка

Всего АПЛ проекта 705 было построено семь штук, они стали первыми в мире серийными лодками, оснащенными реакторами с ЖМТ. Первая лодка, К-64, заложенная в июне 1968 года в том же старинном эллинге, где за 70 лет до этого строился знаменитый крейсер «Аврора», в декабре 1971 года была передана ВМФ. Основные проблемы опытной эксплуатации были связаны с реактором, который принципиально отличался от хорошо знакомых водо-водяных. Дело в том, что сплав свинец-висмут кристаллизуется при +145°С, и при эксплуатации реактора с таким ЖМТ ни в коем случае нельзя допускать снижения температуры в первом контуре до этого значения. Именно в результате несоблюдения этого условия в трубопроводах одной, а затем и второй петли первого контура стали возникать пробки из застывшего расплава, вернуть который в жидкое состояние было уже невозможно. Произошло «закозление» паропроизводительной установки, сопровождаемое разгерметизацией первого контура и радиоактивным загрязнением лодки, которая в это время стояла у причала на своей базе. Вскоре стало ясно, что реактор безвозвратно загублен, и лодка уже не могла выходить в море. В результате в августе 1974 года она была выведена из состава флота и после долгих дебатов разрезана на две части, каждую из которых было решено использовать для тренировок экипажей и отработки новых технологий. Носовую часть лодки отбуксировали в Ленинград, а кормовая с реакторным отсеком осталась в Северодвинске на судоремонтном заводе «Звездочка». Там же скорбным памятником остался стоять черный крест отрезанного кормового стабилизатора К-64 с горизонтальными и вертикальными рулями. В среде военных моряков и кораблестроителей еще долго ходила шутка-загадка о «самой длинной в мире лодке».

Реальная жизнь

Строительство серии, которое уже активно велось в Ленинграде и Северодвинске, было приостановлено, но через пару лет возобновлено, и с 1977 по 1981 год флоту было передано шесть АПЛ 705-го проекта. Эти корабли довольно интенсивно и успешно несли службу в составе Северного флота, вызывая серьезную озабоченность у стран НАТО. Учитывая печальный опыт К-64, на всех серийных АПЛ этого проекта был дополнительно установлен «электрокотел», задачей которого было поддерживать необходимую температуру в первом контуре реактора, когда тот при стоянке АПЛ на базе был выведен на минимальную мощность. Для работы котла требовалось подавать электроэнергию c берега. С этим случались перебои, а поскольку экипажи лодок отчаянно боялись погубить реактор, он поддерживался не на минимальном уровне мощности, что ускоряло выработку ядерного топлива. Кроме того, неудовольствие флотского базового начальства вызывала необходимость организации специальных лабораторий для периодических проверок, регулировок и ремонта автоматики, которой были нашпигованы лодки этого типа. Так что забот береговым службам ВМФ добавилось немало. Все чаще возникали разговоры на тему, что новые корабли, несмотря на уникальные боевые качества, опережают свое время и излишне сложны в обслуживании. Седьмую серийную лодку не стали достраивать, а разрезали прямо на стапеле. К 1990 году все (кроме одной) АПЛ 705-го проекта были выведены из состава флота, прослужив существенно меньше того срока, на который были рассчитаны.

Последняя «Альфа»

Ставшая исключением К-123 задержалась в строю до 1997 года вследствие непомерно затянувшегося ремонта после серьезной аварии в 1982 году. Когда лодка находилась в подводном положении в Баренцевом море, на пульте управления в центральном посту АПЛ неожиданно загорелся сигнал «Неисправность реактора». На разведку в необитаемый реакторный отсек отправился лейтенант Логинов, который через минуту доложил, что наблюдает серебристый металл, растекающийся по палубе: это был вырвавшийся из первого контура реактора высокоактивный ЖМТ. Одновременно включился сигнал «Загрязнение реакторного отсека. Покинуть отсек!», и, как вспоминал позже один из членов экипажа, переживший аварию, «о Логинове подумали уже в прошедшем времени». Но Логинов выжил. Выйдя в шлюз, через который реакторный отсек сообщается с остальными помещениями лодки, он оставил там всю одежду и прошел основательную помывку. Реактор был заглушен, АПЛ всплыла, продув свои балластные цистерны. Как установили позже, из первого контура успело вытечь порядка 2? т ЖМТ. Лодка была так загрязнена, что пришедший на помощь крейсер не решался приблизиться к ней, чтобы передать буксирный трос. В итоге трос все же завели при помощи палубного вертолета с того же крейсера. Ремонт К-123, в ходе которого был полностью заменен реакторный отсек, закончился в 1992 году, АПЛ вернулась в строй и благополучно прослужила до 1997 года. С ее списанием бесславно закончилась проекта 705.

Запасной парашют

Из шести отсеков АПЛ обитаемых было только два, над одним из которых размещалась созданная впервые в мире всплывающая спасательная рубка-камера, рассчитанная на спасение всего экипажа (30 человек) даже с предельной глубины погружения (400 м).

Опередившие время

Атомные подводные лодки проекта 705 могли похвастаться фантастическими скоростными и маневренными характеристиками и множеством новшеств: титановый корпус, реактор на быстрых нейтронах с жидкометаллическим теплоносителем и полностью автоматизированное управление всеми системами корабля.


Подводный металл
Корпус лодки был изготовлен из титана, поэтому специалистам ЦНИИ металлов и сварки («Прометей») и ЦНИИ технологии судостроения пришлось разработать специальные технологии сварки и соединения титановых деталей, а металлургам - новые коррозионностойкие сплавы.

Жидкий металл

Атомные корабли - по сути пароходы, поскольку их гребные винты приводятся в движение паровыми турбинами. Но пар образуется не в обычных котлах с топками, а в атомных реакторах. Тепло радиоактивного распада передается от ядерного топлива в первом контуре охлаждения теплоносителю, обычно воде под давлением (чтобы поднять температуру до 200 °C и более), которая одновременно служит и замедлителем нейтронов. А теплоноситель уже передает тепло воде второго контура, испаряя ее. Но вода под давлением имеет свои недостатки. Высокое давление означает, что стенки труб системы охлаждения первого контура реактора должны быть толстыми и прочными, а при разгерметизации первого контура радиоактивный пар проникает в самые труднодоступные места. Одной из альтернатив является использование реакторов на быстрых нейтронах с теплоносителем из легкоплавких металлов в их жидкой фазе - например, натрия или свинцово-висмутового сплава. Теплопроводность и теплоемкость их значительно выше, чем у воды, их можно нагревать до более высоких температур без высокого давления в первом контуре, что позволяет создавать очень компактные реакторы.

Для любой страны - это мощный геополитический механизм сдерживания. А подводный флот самим своим наличием влияет на международные отношения и эскалацию конфликтов. Если в XIX веке границу Британии определяли борта ее военных фрегатов, то в XX веке лидером Мирового океана становится военно-морской флот Соединенных Штатов Америки. И американские сыграли в этом не последнюю роль.

Первостепенное значение

Подводный флот приобретает для Америки все большее значение. Исторически территория страны была ограничена водными границами, затрудняющими скрытное нападение противника. С появлением в мире современных подводных субмарин и ракет "подводная лодка - воздух" эти границы становятся для Америки все более призрачными.

Обострившееся противостояние международных взаимоотношений с мусульманскими странами делает угрозу для жизни граждан Америки реальной. Иранские исламисты не оставляют попыток обзавестись ракетами «подводная лодка - воздух», и это угроза для всех прибрежных центров Америки. И в таком случае разрушения будут колоссальны. Противостоять нападению уже из-под воды может только такой же соперник.

Нынешний президент США Дональд Трамп в своих первых интервью заметил, что намерен и далее увеличивать подводный флот США. Но при одном условии - снижении его стоимости. Над этим стоит задуматься корпорациям, которые строят атомные американские подводные лодки. Прецедент уже есть. После того как Дональд Трамп сказал, что обратится в компанию Boeing за предложением более дешевых истребителей, компания Lockheed Martin снизила стоимость истребителя F -35.

Боевая мощь

Сегодня подводные лодки США преимущественно имеют атомные источники энергии. А это означает, что при проведении операций ограничения в боеспособности будут только в количестве пищи и воды на борту. Самый многочисленный класс субмарин «Лос-Анджелес». Это лодки третьего поколения с водоизмещением порядка 7 тонн, глубиной погружения до 300 метров и стоимостью порядка 1 миллиона долларов. Однако в настоящее время Америка заменяет их лодками четвертого поколения класса «Вирджиния», более оснащенными и стоящими 2,7 миллиона долларов. И цена эта оправдана их боевыми характеристиками.

Боевой состав

Сегодня лидирует и по количеству, и по оснащению морского вооружения. В военно-морские силы США входит 14 стратегических атомных подводных лодок и 58 многоцелевых подводных лодок.

Подводный флот американских военных оснащен двумя видами субмарин:

  • Океанские баллистические лодки. Глубоководные субмарины, цель которых доставка вооружения к пункту назначение и выпуск баллистических ракет. Другими словами их называют стратегическими. Оборонное оружие не представлено сильной огневой мощью.
  • «Лодки - охотники». Высокоскоростные лодки, цели и задачи которых разносторонни: доставка крылатых ракет и миротворческих сил в зоны конфликта, молниеносное нападение и уничтожение сил противника. Такие субмарины называют многофункциональными. их специфика - скорость, маневренность и скрытность.

Начало развития подводного мореплавания в Америке начинается с середины позапрошлого века. Объем статьи не предполагает такого массива информации. Сосредоточимся на атомном арсенале, который получил развитие после окончания Второй мировой войны. Краткий обзор подводного атомного арсенала Вооруженных сил Америки проведем, придерживаясь хронологического принципа.

Первые экспериментальные атомные

В на верфи в Гротоне в январе 1954 года была спущена на воду первая американская подводная лодка «Наутилус» (USS Nautilus) водоизмещением около 4 тысяч тонн и длиною в 100 метров. Она вышла в первое плавание через год. Именно «Наутилус» в 1958 году первый прошел под водой Северный полюс, что чуть не закончилось трагедией - поломкой перископа из-за сбоя систем навигации. Это была экспериментальная и единственная многоцелевая торпедная лодка с сонарной установкой в носовой части, а торпедами и в задней. Подводная лодка «Барракуда» (1949-1950) показала такое расположение наиболее удачным.

Атомные американские подводные лодки появлением обязаны военно-морскому инженеру, контр-адмиралу Хайману Джорджу Риковеру (1900-1986).

Следующим экспериментальным проектом стала USS Seawolf (SSN-575), выпущена тоже в единственном экземпляре в 1957 году. Она имела реактор с жидким металлом в качестве теплоносителя в первом контуре реактора.

Первые серийные атомные

Серия из четырех подводных лодок, построенных в 1956-1957 годах - «Скейт» (USS Skate). Они находились в составе вооруженных сил США и списаны были в конце 80-х годов прошлого столетия.

Серия из шести лодок - «Skipjack» (1959). До 1964 года это самая крупная серия. Лодки имели «альбакоровскую» форму корпуса и наивысшую скорость до серии «Лос-Анджелес».

В это же время (1959-1961) запускается специализированная серия атомных лодок в количестве пяти - «Джордж Вашингтон». Это лодки первого баллистического проекта. На каждой лодке находилось 16 ракетных шахт для ракет Polaris A-1. Точность стрельбы увеличивал гигроскопический успокоитель качки, в пять раз снижающий амплитуду на глубине до 50 метров.

Затем последовали проекты атомных подводных лодок по одному экспериментальному экземпляру серий Triton, Halibut, Tullibe. Американские конструкторы экспериментировали и совершенствовали системы навигации и энергетические системы.

Крупная серия многофункциональных лодок, пришедшая на смену Skipjack, состоит из 14 атомных субмарин Treaher.Последняя была списана в 1996 году.

Серия Benjamin Franklin - подводные лодки типа ракетоносцев «Лафайет». Сначала они были вооружены баллистическими ракетами. В 70-х годах перевооружены ракетами «Посейдон», а затем «Трайдент-1». Двенадцать лодок серии Benjamin Franklin в 1960 годах вошли в состав флота стратегических ракетоносцев, названного «41 на страже Свободы». Все корабли этого флота были названы именами деятелей американской истории.

Самая крупная серия - USS Sturgeon - многофункциональных атомных лодок включает 37 субмарин, созданных в период 1871 по 1987 годы. Отличительная особенность - пониженный уровень шума и датчики для подледного плавания.

Лодки, несущие службу в ВМФ США

С 1976 года по 1996 оснащение ВМФ производится многоцелевыми лодками типа Los Angeles. Всего выпущено 62 лодки данной серии, это самая многочисленная серия субмарин многоцелевого назначения. Вооружение торпедное и вертикальные пусковые установки ракет типа «Томагавк» с системами самонаведения. Девять лодок класса Los Angeles участвовали в Реакторы GE PWR S6G мощностью 26 МВт разработаны "Дженерал Электрик". Именно с этой серии начинается традиция называть лодки именами городов Америки. Сегодня в составе ВМФ США 40 лодок данного класса несут боевую службу.

Серия стратегических атомных подводных лодок, выпущенных с 1881 по 1997 год, состоит из 18 субмарин с баллистическими ракетами на борту - серия «Огайо». Подводная лодка этой серии вооружена 24 межконтинентальными баллистическими ракетами с индивидуальным наведением. Для защиты они вооружены 4 торпедными аппаратами. «Огайо» - подводная лодка, составляющая основу наступательных сил флота США, 60% времени он находятся в море.

Последний проект атомных подлодок многоцелевого назначения третьего поколения «Сивулф»(1998-1999). Это самый секретный проект ВМФ США. Его называли «усовершенствованный Лос-Анджелес» за особенную бесшумность. Он появлялся и исчезал не замеченный радарами. Причина - специальное звукоизолирующее покрытие, отказ от винта в пользу двигателя типа водомета и широкого внедрения датчиков шума. Тактическая скорость в 20 узлов делает его таким же шумным, как «Лос-Анджелес», стоящий на причале. Всего лодок этой серии три: «Сивулф», «Коннектикут» и «Джимми Картер». Последняя введена в эксплуатацию в 2005 году, и именно этой лодкой управляет терминатор во втором сезоне телесериала «Терминатор: Хроники Сары Коннор». Это лишний раз подтверждает фантастичность этих лодок как внешне, так и по содержанию. «Джимми Картер» называют еще «белым слоном» среди субмарин за его размеры (лодка длиннее собратьев на 30 метров). А по своим характеристикам эта субмарина может считаться уже подводным кораблем.

последнего поколения

Будущее в подводном кораблестроении началось с 2000 годов и связано с новым классом лодок класса USS Virginia. Первая лодка такого класса SSN-744 спущена на воду и введена в эксплуатацию в 2003 году.

Подводные лодки ВМС США данного типа называют складом оружия из-за оснащения мощным арсеналом, и «идеальным наблюдателем», из-за самых сложных и чувствительных сенсорных систем, когда-либо устанавливаемых на субмаринах.

Передвижение даже по относительному мелководью обеспечивает атомный двигатель с ядерным реактором, план которого засекречен. Известно, что реактор рассчитан на срок службы до 30 лет. Уровень шумности снижается за счет системы изолированных камер и современной конструкции энергетического блока с «глушащим» покрытием.

Общие тактико-технические характеристики лодок класса USS Virginia, которых на сегодня введено в эксплуатацию уже тринадцать:

  • скорость до 34 узлов (64 км/ч);
  • глубина погружения составляет до 448 метров;
  • от 100 до 120 членов экипажа;
  • надводное водоизмещение - 7,8 тонны;
  • длина до 200 метров, а ширина около 10 метров;
  • атомная силовая установка типа GE S9G.

Всего в серии предусмотрен выпуск 28 АПЛ "Вирджиния" с постепенной заменой арсенала ВМФ на лодки четвертого поколения.

Лодка Мишель Обамы

В августе прошлого года на военной верфи в Гротоне (штат Коннектикут) состоялся ввод в эксплуатацию 13 субмарины класса USS Virginia с бортовым номером SSN -786 и названием «Иллинойс» (Illinois). Названа она в честь родного штата тогдашней первой леди Мишель Обамы, которая принимала участие в ее спуске на воду в октябре 2015 года. Инициалы первой леди, по традиции, выбиты на одной из деталей субмарины.

Атомная подводная лодка «Иллинойс» длиной 115 метров и с 130 членами экипажа на борту оснащена необитаемым подводным аппаратом для обнаружения мин, шлюзом для водолазов и другим дополнительным оборудованием. Предназначение данной субмарины проведение прибрежных и глубоководных операций.

Вместо традиционного перископа на лодке действует телескопическая система с телекамерой, установлен лазерный датчик инфракрасного наблюдения.

Огневая мощь лодки: 2 установки револьверного типа по 6 ракет и12 вертикальных крылатых ракет класса «Томагавк», а также 4 торпедных аппарата и 26 торпед.

Общая стоимость субмарины - 2,7 миллиарда долларов.

Перспектива военного подводного потенциала

Высшие чины ВМФ США настаивают на постепенной замене дизельно-топливных подводных лодок на лодки, практически не имеющие ограничений в ведении боевых операций - с атомными двигательными установками. Четвертое поколение АПЛ "Вирджиния" предусматривает выпуск 28 субмарин данного класса. Постепенная замена арсенала военно-морских сил на лодки четвертого поколения повысит рейтинг и боеспособность американской армии.

Но конструкторские бюро продолжают работать и предлагать свои проекты армии.

Десантные американские подводные лодки

Скрытная высадка войск на территории противника - вот цель всех десантных операций. После Второй мировой войны такая технологическая возможность у Америки появилась. Бюро кораблестроения (Bureau of Ships) получило заказ на десантную субмарину. Проекты появились, но десантные войска не имели финансового обеспечения, а флот не заинтересовался идеей.

Из всерьез рассматриваемых проектов можно упомянуть проект фирмы Seaforth Group, появившийся в 1988 году. Спроектированная ими десантная субмарина S-60 предполагает спуск в воду на расстоянии 50 километров от берега, погружение на глубину 5 метров. Со скоростью в 5 узлов подводный катер достигает береговой линии и высаживает 60 десантников по выдвигающимся мостикам на расстоянии до 100 метров от берега. Пока проект никто не купил.

Надежность, проверенная временем

Самая старая подводная лодка в мире, которая до сегодняшнего дня находится на вооружении - это подводная лодка "Балао SS 791 Hai Shih" («Морской лев»), входящая в состав ВМС Тайваня. Американская субмарина времен Второй мировой войны, построенная на верфи Portsmouth Naval Shipyard, в 1945 году пополнила военный подводный флот США. На ее счету один боевой поход в августе 1945 в Тихом океане. После нескольких модернизаций, в 1973 году она была передана Тайваню и стала первой действующей лодкой Китая.

В январе 2017 года в прессе появилась информация о том, что в течение 18 месяцев планового ремонта на верфях судостроительной корпорации Taiwan International Shipbuilding Corporation «Морскому льву» проведут общий ремонт и замену навигационного оборудования. Эти работы продлят срок службы субмарины до 2026 года.

Ветеран субмарин американского производства, единственный в своем роде, планирует отметить восьмидесятилетний юбилей в боевом строю.

Исключительно трагические факты

Открытой и гласной статистике по потерям и аварийности в подводном флоте США нет. Впрочем, то же самое можно сказать и о России. Те факты, которые стали достоянием общественности, будут представлены в данной главе.

В 1963 году двухдневный тестовый поход закончился гибелью американской субмарины «Трешер». Официальная причина катастрофы - поступление воды под корпус лодки. Заглушенный реактор обездвижил субмарину, и она ушла на глубину, забрав жизнь 112 членов экипажа и 17 гражданских специалистов. Обломки субмарины находятся на глубине 2 560 метров. Это первая технологическая авария атомной подводной лодки.

В 1968 году в Атлантическом океане бесследно пропала многоцелевая атомная субмарина «Скорпион» (USS Scorpion). Официальная версия гибели - детонация боекомплекта. Однако и сегодня тайна гибели данного судна остается загадкой. В 2015 году ветераны ВМФ США в очередной раз обратились к правительству с требованием создать комиссию по расследованию данного инцидента, уточнения количества жертв и определения их статуса.

В 1969 году курьезно затонула подводная лодка USS Guitarro с бортовым номером 665. Произошло это у причальной стенки и на глубине в 10 метров. Несогласованность действий и халатность специалистов по калибровке инструментов привели к затоплению. Поднятие и восстановление лодки стоило американскому налогоплательщику порядка 20 миллиона долларов.

Лодка класса «Лос-Анджелес», которая принимала участие в съемках фильма «Охота за Красным Октябрем», 14 мая 1989 года в районе берегов Калифорнии зацепила трос, соединяющий буксир и баржу. Лодка осуществила погружение, затянув за собой буксир. Родственники одного члена экипажа буксира, погибшего в тот день, получили компенсацию от ВМФ в размере 1,4 миллиона долларов.

В последние годы в ВМС ведут капиталистических стран стали широко применяться ядерные энергетические установки (ЯЭУ). Успехи в области ядерной энергетики позволили создать в этих странах ЯЭУ, пригодные по своим весовым и габаритным показателям для подводных лодок, что превратило их из «ныряющих» в подлинно подводные корабли. По сообщениям зарубежной печати, такие лодки проходят под водой огромные расстояния со скоростью хода 30 и более узлов, не всплывая по 60 - 70 суток.

Оснащение надводных кораблей ядерными энергетическими установками резко увеличило их боевую эффективность и коренным образом изменило взгляды на использование флота. По мнению зарубежных специалистов, надводные корабли с такими установками, кроме практически неограниченной дальности плавания на различных скоростях хода, имеют следующие преимущества: исключается прием обычного топлива (атомные авианосцы могут увеличить запасы авиационного топлива или принять топливо для кораблей охранения); облегчается герметизация корпуса и улучшается защита корабля от оружия массового поражения, поскольку для работы ЯЭУ не требуется воздух; упрощается расположение помещений и улучшается тепловая защита, поскольку нет дымовых труб и дымоходов; уменьшается коррозия антенн радиоэлектронных средств и фюзеляжей самолетов (на авианосцах) в связи с отсутствием дымовых газов.

Оснащение надводных кораблей ЯЭУ увеличивает степень их готовности и сокращает время перехода в район боевых действий. В результате боевая эффективность кораблей повышается приблизительно на 20 проц.

Ракетные подводные лотки и надводные корабли с ЯЭУ предназначены для осуществления агрессивных замыслов милитаристских кругов стран , направленных против СССР и стран социалистического содружества.

По сообщениям американской печати, первая ЯЭУ была установлена на атомной подводной лодке «Наутилус», введенной в состав флота в 1954 году. К 1961 году американский флот имел 13 подводных лодок, оснащенных ЯЭУ, а в настоящее время в составе ВМС США, Великобритании и Франции насчитывается 119 атомных ракетных и торпедных подводных лодок, а 13 атомных подводных кораблей находятся в постройке.

Как сообщает зарубежная печать, основным типом лодочных ЯЭУ является реактор S5W, которым оснащаются в основном как ракетные, так и торпедные подводные лодки (рис. 1). В состав его паропроизводяшего блока входят водо-водяной реактор под давлением с двумя автономными петлями первого контура, два парогенератора, семь циркуляционных насосов, включенных по три на каждый парогенератор (с одним резервным на оба борта), система компенсации объема, а также другие вспомогательные агрегаты и системы.

Этот реактор фирмы «Вестингауз электрик» относится к классу гетерогенных реакторов на тепловых нейтронах. В 1961 году после некоторого повышения мощности и увеличений кампании активной зоны ему был присвоен шифр S5W2. Тепловая мощность модифицированного реактора (диаметр 2,45 м., высота 5,5 м.) составляет около 70 МВт, давление в первом контуре 100 кг/см2, температура теплоносителя на выходе из реактора 280°С.

В активной зоне реактора S5W2 применяются пластинчатые тепловыделяющие элементы с 40-процентным обогащением. Кампания активной зоны составляет 5000 ч., что обеспечивает атомным подводным лодкам дальность плавания полным ходом 140000 миль, а экономическим ходом 400 000 миль. Календарный срок использования активной зоны 5 - 5,5 лет.
Главный турбозубчатый агрегат (мощность на валу 15 000 л. с.) состоит из двух турбин, которые работают через двухступенчатый зубчатый редуктор на один гребной вал с малошумным гребным винтом. Давление пара перед маневровым устройством достигает 23 кг/см2, а температура 240° С.

Два автономных синхронных турбогенератора мощностью по 1800 кВт являются основными источниками электроэнергии. Они вырабатывают переменный трехфазный ток (частота 60 Гц, напряжение 440 В). Аккумуляторная батарея емкостью 7000 А.ч (режим разрядки 5 ч.), состоящая из 126 свинцово-кислотных элементов, и дизель-генератор постоянного тока мощностью 500 кВт служат резервными источниками питания. В состав электрооборудования ЯЭУ входит также тихоходный электродвигатель постоянного тока, включенный в линию вала. В режиме движения подводной лодки с минимальным шумоизлучением гребной электродвигатель работает через обратимый преобразователь от турбогенератора, а в аварийных случаях - от дизель-генератора или аккумуляторной батареи. Кроме того, на американских атомных подводных лодках установлены два асинхронных электродвигателя погружного типа с трехлопастными гребными винтами в насадке, которые выдвигаются из легкого корпуса на баллерах и используются главным образом как подруливающие устройства.

Ядерной энергетической установкой оснащаются атомные подводные лодки подводным водоизмещением 3500 - 8230 т. (скорость хода до 30 узлов).

По сообщениям зарубежной печати, в ВМС США накоплен опыт эксплуатации ЯЭУ с жидкометаллическим теплоносителем. Реактор S2G с жидким натрием в первом контуре для второй атомной подводной лодки ВМС США разрабатывался почти одновременно с водо-водяным реактором S2W. В реакторе S2G и его наземном прототипе SIG ядерным горючим служил высокообогащенный уран, а замедлителем - графит.

Опытная эксплуатация реактора S2G, как сообщалось в иностранной печати, выявила бесперспективность ЯЭУ с жидкометаллическим теплоносителем. Командование ВМС США, считая, что возможность утечки радиоактивного жидкометаллического сплава представляет большую опасность для личного состава корабля, сделала свой выбор в пользу водо-водяного реактора. Реактор S2G на подводной лодке «Сивулф» (прошла 71611 миль) был заменен в течение 1959 года реактором S2W.

По данным зарубежной печати, ядерные энергетические установки, применяемые в настоящее время на подводных лодках ВМС Великобритании и Франции, по типу, основным параметрам и компоновочной схеме подобны американской установке S5W. Первая английская атомная подводная лодка «Дредноут» была оснащена ЯЭУ, спроектированной и изготовленной фирмой «Роллс-Ройс» при технической помощи американских специалистов, а реактор S5W поставила фирма «Вестннгауз электрик». Установка серийных атомных подводных лодок типа и разрабатывалась и изготовлялась уже целиком английской промышленностью без привлечения фирм США. Она включает реактор типа S5W и главный турбозубчатый агрегат (мощность на валу 15 000 л. с.), работающий на одну линию вала с шестилопастным гребным винтом. Для новой атомной торпедной подводной лодки типа была создана более мощная ЯЭУ, реактор которой имеет усовершенствованную активную зону с повышенным сроком службы.

На первой атомной ракетной подводной лодке ВМС Франции вначале предполагалось использовать реактор с тяжеловодным замедлителем. Однако в ходе проектирования корабля от этого замысла отказались, и на все лодки типа устанавливается стандартная одновальная ЯЭУ мощностью 15 000 л. с. (рис. 2). Французские реакторы в отличие от американских и английских работают на уране при 93,5-процентном обогащении.

В настоящее время в атомном центре Кадараш () создается ЯЭУ для атомных торпедных подводных лодок, строительство которых начнется в ближайшие годы.

Одной из главных задач в области атомного подводного кораблестроения американские специалисты считают создание ЯЭУ с низкими уровнями шумоизлучения. Уже в процессе разработки реактора S5W были приняты меры по обесшумливанию механизмов установки (главным образом за счет уменьшения напряженности их работы, повышения точности обработки деталей и монтажа). Однако эти меры не дали существенных результатов. Поиски принципиально нового подхода к решению этой важной проблемы привели к созданию энергетической установки с электродвижением, которая была испытана на атомной подводной лодке , построенной в 1960 году. ЯЭУ этого опытного корабля имеет небольшой реактор типа S2C, два турбогенератора и гребной электродвигатель мощностью 2500 л. с. Турбоэлектрическая передача мощности на гребной вал позволила значительно снизить шумность установки за счет исключения зубчатого редуктора и упростить систему ее управления, обеспечив возможность быстрого изменения направления и частоты вращения гребного винта. Но применение электродвижения ведет к увеличению веса и объема установки, а также к снижению ее экономичности.

Как сообщала американская печать, в начале 1966 года в США приступили к постройке опытной атомной подводной лодки с реактором S5G, имеющим повышенный уровень естественной циркуляции теплоносителя в первом контуре. Атомная подводная лодка «Нарвал» быта введена в состав ВМС США в 1969 году. Её водоизмещение 5350 т., мощность ЯЭУ 17 000 л. с., скорость хода 30 узлов. По мнению американских специалистов, исключение из состава оборудования первого контура больших циркуляционных насосов устраняет один из основных источников шума ЯЭУ, а также повышает надежность установки и упрощает ее обслуживание.

В настоящее время в США заканчивается строительство опытной атомной подводной лодки «Гленард П. Липскомб» На ней использован реактор с естественной циркуляцией теплоносителя S5WA (усовершенствованный S5G) и турбоэлектрическая силовая установка.

По данным зарубежной печати, надводные корабли с ЯЭУ строятся только в США. На них также используются водо-водяные реакторы под давлением, созданные фирмами «Вестингауз электрик» и «Дженерал электрик». Однако в отличие от атомных подводных лодок на этих кораблях не получила распространения унифицированная энергетическая установка. Для каждого типа корабля проектируется новая ЯЭУ при сохранении по возможности основного стандартного оборудования.

В американской печати сообщалось, что ударный авианосец (флагман атомного надводного флота США), вступивший в строй в конце 1961 года, оснащен четырехвальной ЯЭУ (общая мощности 28000 л. с.) с восемью реакторами тина A2W, расположенными в четыре эшелона. Пар, вырабатываемый в каждом паропроизводяшем блоке, скомпонованном по двухпетлевой схеме, поступает на одну главную турбину и два турбогенератора мощностью по 2500 кВт. В состав ЯЭУ атомного крейсера входят два реактора типа C1G, четыре главные турбины, работающие попарно через понижающие зубчатые редукторы на две линии вала, и шесть турбогенераторов. Суммарная мощность энергетической установки 160 000 л. с., скорость полного хода корабля 35 узлов. Двухвальная ЯЭУ фрегатов УРО «Тракстан» и «Бейнбридж» включает два реактора типа D2G, два главных турбозубчатых агрегата суммарной мощностью 60 000 л. с. и пять турбогенераторов мощностью по 2500 кВт.

На всех атомных надводных кораблях ВМС США предусмотрена вспомогательная котельная установка и запас топлива к ней.

В настоящее время для ВМС США строятся два атомных ударных авианосца типа и пять атомных фрегатов: два типа и три типа «Виргиния». Их энергетические установки будут иметь новые реакторы, более мощные главные турбозубчатые агрегаты и улучшенное электрооборудование.

Зарубежные военно-морские специалисты считают, что ЯЭУ надводных кораблей имеют слишком высокий удельный вес (45 - 55 кг/л.с.) по сравнению с паротурбинными установками той же мощности (12 - 18 кг/л.с. без учета запаса топлива). Это одна из причин, препятствующих внедрению ЯЭУ на корабли класса «эскадренный миноносец».

ЯЭУ непрерывно развиваются и совершенствуются. Большой размах научно-исследовательские и опытно-конструкторские работы приобрели в США, где строятся экспериментальные и опытовые корабли для проверки новых технических решений, направленных на улучшение характеристик ЯЭУ.

Развитие корабельных ЯЭУ, по мнению американских военно-морских специалистов, идет в следующих основных направлениях: увеличение кампании активной зоны и глубины выгорания топлива, снижение уровней шумоизлучения, повышение надёжности.

Командование ВМС США с самого начала создания атомного флота уделяет внимание вопросам увеличения срока службы активной зоны, а также повышения надежности всей установки, поскольку эти характеристики влияют на оперативное использование атомных кораблей. Однако, первые активные зоны со значительно увеличенной кампанией были созданы лишь к 1961 году. Ударный авианосец «Энтерпрайз» после первой загрузки ядерным топливом прошел 207 000 миль, после втором - более чем 500 000 миль. Во время капитального ремонта в его реакторы была установлена активная зона новой конструкции с календарным сроком службы 10 - 13 лет.

По сообщениям зарубежном печати, в США, и Японии имеются, а в Великобритании, Франции, Италии и Нидерландах разрабатываются ЯЭУ также и для судов торгового флота, что позволит в процессе эксплуатации выявить их достоинства и недостатки, которые впоследствии можно будет учесть при проектировании ядерных реакторов для военных кораблей.

В последние годы наметился новый путь в развитии ЯЭУ. Для кораблей атомного флота США созданы и разрабатываются ядерные реакторы мощностью 100 тыс. л.с. и более. Например, два реактора ударного авианосца «Нимитц» обладают такой же мощностью, как и восемь реакторов ударного авианосца «Энтерпрайз». Большую мощность будут иметь реакторы скоростных лодок типа и лодок ракетной системы морского базирования .

При разработке новых ЯЭУ специалисты стремятся также сократить время, затрачиваемое на перегрузку активных зон реакторов, усовершенствовать конструкцию отдельных узлов энергетической установки и уменьшить её габариты.

По сообщениям зарубежной печати, в западных странах наряду с развитием ЯЭУ, имеющих водо-водяные реакторы под давлением, создаются энергетические установки с реакторами других типов, из которых наиболее перспективными считаются кипящие реакторы и реакторы с газовым охлаждением.

Разработки кипящих реакторов с водяным теплоносителем ведутся преимущественно в США. Попытки в создании ЯЭУ с высокотемпературными газовыми реакторами имеет , где недавно разработан проект одноконтурной ядерной газотурбинной установки для глубоководной ракетной подводной лодки стандартным водоизмещением 3600 т. Зарубежные военно-морские специалисты считают одной из особенностей предлагаемой установки применение турбогенераторов и гребного электродвигателя со сверхпроводящими обмотками, что позволит уменьшить габариты и вес установки на 80-85 проц. и повысить экономичность электропередачи. Предполагается, что при реализации проекта можно будет обеспечить к.п.д. установки около 30 проц., а в дальнейшем довести его до 42 проц. (к.п.д. ЯЭУ с водо-водяными реакторами меньше 28 проц.).

По сообщениям зарубежной печати, техническое осуществление всех проектов корабельных ядерных газотурбинных установок с газоохлаждаемымн реакторами встречает большие трудности.

Как утверждают зарубежные военно-морские специалисты, в капиталистических странах, ВМС которых действуют в акватории Мирового океана, ведется строительство только атомных подводных лодок. Надводные корабли с ЯЭУ строятся пока только в США. Высказывается мнение, что единственным типом корабельных ядерных реакторов в ближайшие годы останется водо-водяной реактор с принудительной и естественной циркуляцией теплоносителя в первом контуре.